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e Abstract

In many applications one would like to use infor-
mation from both color and texture features in order

to segment an image. We propose a novel technique
to combine "soft" segmentations computed for two or

more features independently. Our algorithm merges
models according to a mean entropy criterion, and al-

lows to choose the appropriate number of classes for
the final grouping. This technique also allows to im-

prove the quality of supervised classification based on

one feature (e.g. color) by merging information from

unsupervised segmentation based on another feature

(e.g., texture.)

1 Introduction

Image segmentation is a fundamental task in Com-

puter Vision. Color and texture provide powerful cues

for segmenting a still image, and much. work has been

devoted to developing grouping algorithms based on

these two features [1],[3],[5]. In fact, most of the lit-
erature deals with segmentation based on either color

or texture; this work was originated by the intuition

that using information provided by both features, one

should be able to obtain more robust and meaningful
results.

Underlying our approach is the hypothesis that in
typical images color and texture features are not sta-

tistically independent. Perhaps the simplest way to
exploit this dependency is to concatenate the color

and texture feature vectors together, and then run the

grouping algorithm of choice on these super-vectors.

This approach, however, may give the feeling of "com-

paring apples with oranges". Indeed, color and texture

features often have very different statistical behaviors;

one may prefer to use the most suitable grouping algo-

rithm for each feature separately, and then somehow

combine the results of the two segmentations together.

This work introduces a strategy to merge together

in a Bayesian framework segmentations computed on

color and texture features independently. The only

requirement is that the segmentations are expressed

in terms of posterior probabilities [2]. Note that most

clustering algorithms based on mixture models explic-

itly compute estimates of the posterior distributions,

and do the final assignment by Bayesian classification

(i.e., they assign a feature to the component of the

mixture model that most likely generated that fea-

ture.)

For example, in Figure 2 (b) and (c) we show in-

stances of color and texture segmentation of the image
in Figure 2 (a). The texture features are formed by

the absolute values of the outputs of a bank of Gabor

filters, smoothed by a gaussian kernel to enforce spa-

tial coherence [3]. The mixture model in both cases

has been estimated by Expectation Maximization [2];

the "hard" segmentation shown in the figures is the
result of Bayesian classification based on such mix-

ture models. Both mixture models have four classes,

although our algorithm can accept any combination

of classes. The scene in figure 2(a) is compo'_l by
a small number of homogeneous parts: two bushes, a

paved road on the right, dirt soil on the left, a shadow

area near a bush and piece of dark background. The

color segmenter (figure 2(b)) successfully separates the

"bush", the "background" and the "road" areas, but

is unable to discriminate the "'road" from "soil" parts,

which have very similar color. The texture segmenter

does separate the "'road" and "soil" areas, but cannot

discriminate the "'road" from the "'background" parts;

in addition, it assigns the "soil" area to two distinct
classes of the mixture model.

Our technique for model fusion involves two steps.

First, the two models are merged by a "'cartesian prod-

uct" operator, discussed in section 2. This operation
preserves all the information about the models, but

has the disadvantage of creating a large number of
classes, equal to the product of the number of classes of

the two original models. Then, the number of classes



ofthecombinedmodelis reduced by a technique, pre-
sented in section 3, that "clips together" sets of classes.

Such classes are selected on the basis of a mean sn-

tropy criterion that minimizes the loss of "descriptive-
ness"; the mean entropy criterion also provides useful

information for choosing the appropriate number of

classes for the final model. An intriguing application

of our algorithm is discussed in section 4, and involves

information fusion from supervised classification (e.g.,

based on color) and unsupervised segmentation (e.g.,

based on texture.) The unsupervised segmentation is
used to leverage the estimates provided by the trained

model, resulting in a more accurate classification.

2 s Cartesian product of mixture models
Our merging technique starts from K given mixture

models [2] (called "models" in the following.) The i-th
model, A4i, is composed by Ni classes, and defines a

probability density function Pi (zi):

Nt

pi(zi) = _)-_pi(zilj)Pi(j)
j=l

(1)

where zi, the observed feature, lives in a space Zi.
For example, zi may be a color vector, or a texture

feature in a multiseale/multiorientation space. The

conditional likelihood functions Pi(zilj) and the pri-

ors Pi(j) specify the model completely. The posterior

distributions are given by Bayes' rule:

Pi(jlzi) - pi(zilj)Pi(j)
p,(:,) (2)

Pi(jlzi) is the probability that the observed feature zi

was generated by the class of index j. The Bayesian
classifier for A4i assigns a feature zi to the class in-

dexed by the location of the maximum of Pi(jlzi). To
simplify our presentation, we will assume in the follow-

ing that all the priors are strictly positive: if a prior
Pi(j) is null, we can safely remove the class with index
j from the model.

The cartesian product ,,_ of the models ,_i is a new

model with probability distribution over Z1 ×... × Z,v.

,k4 is completely specified by the following axioms:

1..k4 has ,V = I'IK=l Ni classes, corresponding to
the cartesian product of the classes of the models

M,: j _ (Jl ..... j,v).

2. The conditional likelihood of the feature z =

(:l ..... :h') given the class of index j is equal

to P(zIJ) = 1-IIK=tpi(zilji).

3. The priors factorize as P(j) = l-]h=l Pi(ji).

It follows straightforwardly that the likelihood and the

posteriors of the cartesian product of models factorize
as well:

K K

p(z) = l'IPi(Zi) , P(jlz) -- rI P,(j, lz,)
i=1 i=[

(3)

Note that all the information about the K original
models is preserved in their cartesian product j_. The

Bayesian classifier for j_ assigns a feature z to the

model j ++ (jt,...,jN) such that Ji is the class as-

signed to zi by the Bayesian classifier for Bali. Figure 2
(d) shows the Bayesian segmentation relative to the

cartesian product of the color and texture models of

figure 2 (b) and (c). The new model has 16 classes. In

the next section we describe a procedure to reduce the

dimensionality (i.e., the number of classes) of a model,

in such a way that the loss of "descriptiveness" of the
model is minimized.

3 Dimensionality reduction

Assume we are given a model j_ with N classes.

We introduce here a technique to build a new model

that has fewer classes than A4 but explains the data

exactly as A4, i.e., it defines the same likelihood p(z)
as .A4. Suppose for example that we want to reduce the

dimensionality of the model to N - M. Our strategy
is very simple: we just "clip together" M + 1 classes of

.A4 into a new super-class, leaving the other classes un-

touched. We may decide, for instance, to clip together
the classes of index N - M ..... N. The probability

that a feature z was generated by the union of such

classes according to _ is equal to the sum of the cor-

responding posteriors. This is the value that we assign

to the posterior PneW(N - MIz) for the new model;
the posteriors for the other classes are the same as in
A4:

PneW(jlz) = P(j]z) , l <_j < N - M
N

P'_"(,V-M[z)= Z P(Jlz)
j = N - M

If in addition we impose that the likelihood function
p(z) is the same in both models, the new model is

completely specified.

In general, to reduce the model dimension from N

to .V-M, we may choose any L < M disjoint groups of

classes with Ll components each, such that )-_f=l Ll =
L + M, and clip together the classes in each group.

A criterion for the selection of the most appropriate
clipping scheme is presented in the next section.



3.1 Mean entropy criterion

Dimensionality reduction via class-clipping in-
volves some loss of "descriptiveness" of the modei.Af

for example two classes that "explain" well two dif-

ferent portions of the image are clipped together, the

new model will probably assign those two portions of

the image to the same class. This observation suggests

the criterion for selecting a clipping scheme introduced
in this section. Our criterion is based on the notion

of mean entropy, a well-known concept in the fields of

statistical physics and mixture estimation [4],[6].
Given a feature z, the entropy of the posterior dis-

tribution P(jlz) is defined by [2]

N

s(z) = - _ P(jlz)log P(jlz) (4)
j=l

The entropy s(z) measures the softness of the class

assignment. A distribution with null entropy assigns z

to exactly one class; the maximum value of the entropy

is log N, and is attained if all classes are equally likely
to have generated z.

The mean entropy S of a model is defined by the

expectation of s(z) with respect to the "real" distri-

bution of z. In practice, the mean entropy can be

estimated by averaging s(z) over the observed image.

A model with null mean entropy can only perform

"hard" classification, and will be called degenerate.
Note that the mean entropy of a model estimated via

Expectation Maximization is a function of the "tem-

perature" of the algorithm [6].

The following result, whose proof "is in the Ap-
pendix, characterizes the relation between mean en-

tropy and dimensionality reduction.

Fact 1 Class-chpping never increases the mean en-

tropy of a model.

In general, if a new super-class "takes over" two dif-

ferent portions of the image that the previous model

assigns to two classes separately, a significant decrease
of the mean entropy is expected. Hence, a suitable

criterion for dimensionality reduction is the following
one: choose the clipping scheme that minimizes the

decrement of the mean entropy.

Unfortunately, the number of possible clipping
schemes may be very high even for small model di-

mension. For example, in order to reduce the number

of classes from 16 to 13 we may choose among 45.500

different combinations of class clipping. Measuring
the decrease of mean entropy for each one of those

schemes may require a prohibitive computational cost.

A suboptimal solution can be found using a fast greedy

Greedy algorithm for
dimensionality reduction: N --_ N - M

Given the set of posteriors P(jlz), I < j < N:

Build auxiliary vector R and matrix D:

R(j) = E[-P(jIz) log P(jlz)], 1 < j < N:

JR(j) + R(k) + E[(P(jIx ) + P(klx)).
D(j,k) = {. Iog(P(jlx) + P(klx)) ] ,l < k < j _< N

t pc , otherwise

Initialize an empty list L;

Repeat M times:

(j, k) = arg min D(j, k);
Add k to the list L;

Update P(._lz) 6- P(jlz) + P(klz), P(_:Jz) 6- 0;
Update R(_);

Update D(),k) for k < 3 , k ¢ L;

Update D(k,)) for k > ) , k _ L;

Set D(j', ]¢) = oo for j > ]¢;
Set D(k, j) = oo for j < ]¢;

Remove the classes indexed by the elements of L.

Figure 1: The greedy algorithm to select a class-
clipping scheme (see section 3.1.)

algorithm that builds a sequence of clippings involv-

ing only two classes at a time. At each step, the two

classes that minimize the decrease of the mean entropy
are selected. The algorithm is described in detail in

figure 1.

Figure 2(g) shows an example of Bayesian classi-
fication after dimensionality reduction from 16 to 4

classes, based on the mean entropy criterion. Each

class of the reduced dimension model now represents
a characteristic area of the image. The computation

of the optimal clipping scheme, by a Matlab imple-

mentation of our greedy algorithm, requires about 50

seconds of computation time on a Power Mac G3 266

Mhz (the image size is 256 × 380 pixels.)

3.2 Dimension selection

Mean entropy can also be used as an indicator to

determine an appropriate number of classes for the

reduced dimensionality model. In figure 2(k) we plot-
ted the mean entropy as a function of the number

of classes for our example. Note that the algorithm
for the greedy selection of classes, which reduces the

dimension by one at a time, allows us to easily com-

pute these values as a by-product. It is interesting
to note that the mean entropy does not decrease uni-

formly as the dimension is reduced; in fact, a number



of "phasetransitions"areobserved, corresponding to a
few "representative" dimensions. As noted above, we

may expect the result of the segmentation to change

dramatically in correspondence of an abrupt decrease

of the mean entropy. For example, figure 2(e) and (f)
show results corresponding to dimension 10 and 6 re-

spectively. The two segmentations look very similar;

indeed, the mean entropy in the two cases is almost

the same. However, if we reduce the number of classes,

the mean entropy changes abruptly: this phenomenon

explains the strong difference between the segmenta-

tions of figure 2(0 (6 classes) and (g) (4 classes). The
mean entropy undergoes another large decrement if we

reduce the dimension form 4 to 3: as shown in figure

2(li), this is due to the fact that the class represent-
ing the "soil" and the class representing the "bushes"

have been clipped together.

3.3 Equalization

In the previous sections we have described a strat-

egy for model fusion that first builds the cartesian

product of two models, and then performs dimension-

ality reduction via class-clipping. An implicit assump-
tions was that the two original models give the same

contribution to the final segmentation. This hypoth-

esis does not hold true if the two models have very
different values of the mean entropy. In this case, the

model with the smallest entropy "dominates" the com-
bined model.

We propose a simple equalization procedure that
allows to merge two models with different mean en-

tropies; the procedure can be applied to either one of

the models. The equalization operator starts from a
model ,4,4 and produces a new model with the same

number of classes N. The entropy of this new model

can be tuned to match any desired value So < log N,
and the associated Bayesian classifier yields the same
results as the Bayesian classifier for A4.

The equalization operator simply replaces each pos-
terior distribution P(jl z) with the new distribution
Peq(jlz ), defined as follows:

Peq(JI:) -= c(z)P(jlz) _" , _ > 0

where c is a normalizing coefficient:

(5)

1

c(:) = _:'--"_"t P(JI:V' (6)

The mean entropy properties of the equalization op-

erator are summarized by the following result:

Fact 2 Equalt:atton decreases the mean entropy of a

non-degenerate model if o > 1, and increases tt if
o<l.

(b)

(c) (d)

(e) (f)

(g) (h)

(i) (J)

o z
• m I ro q_ ,4 ,I

(k)

Figure 2: (a): ['est image. (b) Color bau_ed segmentation (4

classes.) ((-)[exture ba.sed segmentation (I ,'lasses.) (<1) Seg-

mentati{_n after cartesiaal product (16 classes.) (e) (h): Seg-

mentation after mt)del merging ((e): 10 ,'lasses. (f): _:, ,'lasses.

(g): 4 ,:lasses, (h): 3 _'la-,_ses.) (i),(j): Segmentati,,n after model

merging (4 classes), with lllea[I entropy -f,',d.r based =m.lel set

t_ 10 times smaller (i) or 10 times larger(j) than texture ba.se_t
m_.lel. (k) Xlean entr, q)y as a functi,,n ,_f m,,,t,,I ,linl,msi,,ll.



(a) (b)

(c) (d)

Figure 3: (a): Test image. (b) Color-based super-

vised classification into the "road" class (yellow) and

the "grass" area (green.) (c) Texture-based unsu-

perrvised segmentation (3 classes.) (d) Hybrid super-
vised/unsupervised classification.

The proof can be found in the Appendix. Note that

= 0 implies that the mean entropy of Peq(j[z) is
equal to logN; the mean entropy of Peq(j[z) can be

made as small as desired by a suitable large value of
c_. Also note that for each feature z the location of the

maximum of the posterior distribution is not changed
by the equalization.

Now, suppose that the two models to be merged
have different mean entropies. We may modify one

of the models via the equalization operator, so that

its mean entropy matches the mean entropy of the

other model. The appropriate value of the parameter
may be found using any non-linear one-dimensional

minimization technique.

In the example of figure 2, the mean entropies of

the color and texture models were very similar, and

equalization was not needed. Equalization, however,
may be used to make either of the models domi-

nant. For example, figure 20) and (j) show the results

of Bayesian segmentation after equalizing the color-

based model to a value of the mean entropy respec-
tively 10 times smaller and 10 times larger than the

mean entropy of the texture-based model (the com-
bined model dimension was reduced to 4 by class-

clipping.) This example shows that equalization is

a practical and simple method for assigning different

"'weights" to the two models to be merged.

4 Hybrid classification

The main differences between supervised classifica-

tion and unsupervised clustering are:

1. The classes ("labels") of a supervised classifier

usually represent "*physical" causes, and therefore

are not logically interchangeable;

2. The statistical model is learned from training
data.

The Bayesian classifier assigns a feature z to the max-

imizer of the posterior [2]. In many instances, only

the conditional likelihoods p(z[j) are learned; how-

ever, reasonable assumptions about the class priors
P(j) are often available, and the posteriors can be

computed using Bayes' rule.

In this section we propose to merge a model A4 _
for supervised classification with a model A4 _ for un-

supervised segmentation (based on a different feature

space,) to create a "hybrid" classifier which assigns
each image point to some label of A4'. The intuition is

that information from the "supervised model" (which

identifies clusters in the feature space based on the

current image) may be used to leverage the classifica-
tion performed by the "unsupervised model", which is

learned from a large training data set and may not be
optimal for the current instance.

The merging algorithm discussed in the previous
sections defines a model A4 with classes that are the

union of cartesian products of classes from A4 s and

A4 _. If C represents a generic class of A4, we may
write

c = I,.J U (7)
vEV w(t,)

where Cs and C_ are classes of Ads and A4 _ respec-
tively, indexed by the corresponding subscripts. To

complete the definition of the hybrid classification

model, we need to identify each class C with some
class of Cs. If the set V of classes of A4' that form

the super-class C is composed by just one element v,

than we simply identify C with 0_. In general, how-

ever, V may have more than one element; in this case,

we identify C with the class C,_ that maximizes the

contribution to C, defined by

E[P( U (C_, _(_))]z)] = (8)

= E[P,(v]z,) _ P_(w(v)[z_)]

where El.] represents the expectation operator, com-
puted with respect to the *'real" distribution of = =

(:1, :._), and Ps(']'), P_('I') and P('I') represent the

posteriors of the models ,_s, ,_ and ,_ respectively.

We present an example of hybrid clac_ification in
Figure 3. Figure 3(a) shows a .scene with a dirt road on

the left and dry gr_s on the right. Supervised color-

based classification (figure 3(b)) is performed using
a trained gaussian model. The "'road" class and the

"'grass" class have very similar colors; this is the reason



whypixelsin thetop-rightquadrantaremisclassified
asbelongingto the "road"class.Figure3(c)shows
theresultsof unsupervisedtexturesegmentationwith
threeclasses, computed via Expectation Maximiza-

tion. The segmenter isolates uniform regions corre-

sponding to the road and to the grass areas, plus a
region corresponding to the border of the road. The

two models are merged into a new model with four

classes; the final hybrid classification is shown in Fig-

ure 3(d). The hybrid classifier has correctly labeled

each one of the four classes of the merged model as ei-
ther the "road" or the "grass" class. The information

from the texture model has helped to correctly classify

most pixels that were misclassified in figure 3(b).
I

5 Conclusions

We have presented a technique for merging to-
gether two segmentations, based on color and tex-

ture. Our technique is very general, and in principle
can be applied also to other classes of features, such

as motion; it only requires that the posterior distri-

butions that originated the segmentations are avail-
able. The results show the effectiveness of the mean

entropy criterion for reducing the dimensionality of
the cartesian product of the two mixture models. We

have also introduced a technique for hybrid super-

vised/unsupervised classification, based on our merg-
ing algorithm, that can improve the performance of

supervised classification using consensus from differ-
ent features.
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Appendix

Proof of Fact 1. A class-clipping operation can al-

ways be implemented by a sequence of class-clippings
involving two classes at a time. We show in the fol-

lowing that the mean entropy can never increase with

any such step. Assume classes j and k are clipped

together; the variation A,(z) of the entropy of the

posterior distribution P(jlz) is equal to

A,(z) =

= -(P(Jlz) + P(klz))log(P(jlz) + P(klz))

+P(jlz) log P(jlz) + P(kl:)log P(klz)

=-P(jlz)log (I + P(klz))_p(jlz)P(klz)log(l

<0

Since the variation of the mean entropy is equal to the
expectation of As(z), the claim is proved.

Proof of Fact 2. We just need to prove the claim for

the case a < 1. The proof is based on the following
two results.

Lemma 1. The entropy of a probability distribution
increases if two values of the distribution are moved

closer to each other, while the other values are left
untouched.

Proof. The claim is a direct consequence of the con-
vexity of the function x log x.

Corollary I. Let P(j), 1 < j < N be a probability
distribution and, for a given K < N, let Jt and Jz be
the sets of the indices of the K smallest values and of

the N - K largest values of P(j) respectively. Now

form a new distribution/5(j) from P(j) by increasing
some of the values with index in Jt while at the same

time decreasing some of the values with index in J_,
with the requirement that

max{P(j),j E J1} < min{P(i),ie J_.}

Then the entropy of/5(j) is higher than the entropy
of P(j).

Proof. The transformation from P(j) to P(j) can be
decomposed into a sequence of steps, each one involv-

ing just one value with index in J1 and just one value

with index in J._. Therefore, by Lemma 1, the entropy
is increased at each such step.

Now, it is easy to prove that the function c(z)x _'-x,

with c(z) defined in (6). vanishes in correspondence of
the value x = c(z) °'-t, which is located between the

smallest and the largest values of P(jlz). Therefore, if

P(jl:) has non-null entropy, the equalization operator
(5) with a < [ falls into the class of transformations

considered in Corollary l: the set Jl is composed by

all the j such that P(j[z) <_ c(:) `_-l, the set J2 is

composed by all the other indices. This proves that for

any z the entropy of P(jIz) increases as a consequence
of equalization with a < I.
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